

# EMENTA DE DISCIPLINA / ATIVIDADE OBRIGATÓRIA

| UNIDADE ACADEMICA                | DEPARTAMENTO                                                                          |            |               |
|----------------------------------|---------------------------------------------------------------------------------------|------------|---------------|
| FIS                              | Programa de Pós-Graduação em Física - PPGF                                            |            |               |
| NOME DA DISCIPLINA               | (X)OBRIGATÓRIA                                                                        | C. HORARIA | CRÉDITOS<br>4 |
| MECÂNICA ESTATÍSTICA             | ( ) ELETIVA                                                                           | 00         | 4             |
| NOME DO PROJETO / CURSO          | DISTRIBUIÇÃO DE CARGA HORÁRIA                                                         |            |               |
| Programa de Pós-Graduação em     | TIPO DE AULA                                                                          | C. HORÁRIA | Nº CRÉDITOS   |
| Física – PPGF                    | TEÓRICA                                                                               | 60         | 4             |
| ÁREA DE CONCENTRAÇÃO:<br>Não há. | PRÁTICA                                                                               | -          | -             |
|                                  | TOTAL                                                                                 | 60         | 4             |
| PRÉ-REQUISITOS<br>Não há.        | (X) Disciplina do curso de mestrado acadêmico<br>(X) Disciplina do curso de Doutorado |            |               |

## **EMENTA**

### 1. Revisão de termodinâmica

#### 2. Teoria cinética

- 2.1. Colisões binárias e secção de choque
- 2.2. Equação de transporte de Boltzmann
- 2.3. Teorema H de Boltzmann
- 2.4. Distribuição de Maxwell-Boltzmann

### 3. Mecânica estatística clássica

- 3.1. Teorema de Liouville
- 3.2. Ensemble microcanônico e a entropia
- 3.3. Teorema de equipartição
- 3.4. Ensemble canônico e correção de Gibbs
- 3.5. Ensemble grande canônico
- 3.6. Flutuações na energia e densidade
- 3.7. Gás imperfeito: equação de estado de van der Waals

## 4. Mecânica estatística quântica

4.1. Ensembles em mecânica estatística quântica

- 4.2 Partículas idênticas e segunda quantização
- 4.3 Espaço de Fock para bósons e férmions
- 4.4 Estatística de Bose-Einstein e Fermi-Dirac

### 5. Aplicações

- 5.1. Método da distribuição mais provável
  - 5.2. Radiação de corpo negro
  - 5.3. Modelo de Debye
- 5.4. Condensação de Bose-Einstein
- 5.5. Propriedades de um gás ideal de Fermi
- 5.6. Paramagmetismo e diamagnetismo
- 5.7. Transporte eletrônico e a equação de Boltzmann

### 6. Introdução a técnicas de muitos-corpos

- 6.1. Superfluidez
- 6.2. Critério de Landau
- 6.3. Hamiltoniana efetiva de Bogoliubov para He<sup>4</sup> superfluido
- 6.4. Supercondutividade: hamiltoniana efetiva de BCS

## 7. Introdução à teoria de transições de fase e fenômenos críticos

- 7.1. Teoria de Landau das transições de fase
- 7.2. Parâmetros de ordem
- 7.3. Função de correlação e o teorema de flutuação-dissipação
- 7.4. Expoentes críticos e hipótese de escala
  - 7.5. Aplicações: modelo de Landau-Ginzburg para supercondutores e quebra espontânea de simetria

#### **BIBLIOGRAFIA BÁSICA**

- K. Huang, Statistical Mechanics, 2nd edition (John Wiley & Sons, New York, 1987)
- C. H. Lewenkopf e R. O. Vallejos, Notas de Aula em Física Estatística, disponível em http://www2.uerj.br/~dfnae/caio.html
- S. Salinas, Introdução à Física Estatística (EDUSP, São Paulo, 1997).
- L. E. Reichl, A Modern Course in Statistical Mechanics (Texas University Press, Austin, 1980).
- F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1985).

Prof. Rudnei de Oliveira Ramos Coordenador geral do PPGF